This is a guest post by John Beieler, originally posted at

I made the remark on Twitter that it seemed like GDELT week due to a Foreign Policy piece about the dataset, Phil and Kalev’s paper for the ISA 2013 meeting, and a host of blog posts about the data. So, in the spirit of GDELT week, I thought I would throw my hat into the ring. But instead of taking the approach of lauding the new age that is approaching for political and social research due to the monstrous scale of the data now available, I thought I would write a little about the issues that come along with dealing with such massive data.

Dealing with GDELT

As someone who has spent the better part of the past 8 months dealing with the GDELT dataset, including writing a little about working with the data, I feel that I have a somewhat unique perspective. The long and the short of my experience is: working with data on this scale is hard. This may strike some as obvious, especially given the cottage industry that has sprung up around Hadoop and and other services for processing data. GDELT is 200+ million events spread across several years. Each year of the reduced data is in a separate file and contains information about many, many different actors. This is part of what makes the data so intriguing and useful, but the data is also unlike data such as the ever-popular MID data in political science that is easily managed in a program like Stata or R. The data requires subsetting, massaging, and aggregating; having so much data can, at some points, become overwhelming. What states do I want to look at? What type of actors? What type of actions? What about substate actors? Oh, what about the dyadic interactions? These questions and more quickly come to the fore when dealing with data on this scale. So while the GDELT data offers an avenue to answer some existing questions, it also brings with it many potential problems.

Careful Research

So, that all sounds kind of depressing. We have this new, cool dataset that could be tremendously useful, but it also presents many hurdles. What, then, should we as social science researchers do about it? My answer is careful theorizing and thinking about the processes under examination. This might be a “well, duh” moment to those in the social sciences, but I think it is worth saying when there are some heralding “The End of Theory”. This type of large-scale data does not reduce theory and the scientific method to irrelevance. Instead, theory is elevated to a position of higher importance. What states do I want to look at? What type of actions? Well, what does the theory say? As Hilary Mason noted in a tweet:

Data tells you whether to use A or B. Science tells you what A and B should be in the first place.

Put into more social-scientific language, data tells us the relationship between A and B, while science tells us what A and B should be and what type of observations should be used. The data under examination in a given study should be driven by careful consideration of the processes of interest. This idea should not, however, be construed as a rejection of “big data” in the social sciences. I personally believe the exact opposite; give me as many features, measures, and observations as possible and let algorithms sort out what is important. Instead, I think the social sciences, and science in general, is about asking interesting questions of the data that will often require more finesse than taking an “ANALYZE ALL THE DATA” approach. Thus, while datasets like GDELT provide new opportunities, they are not opportunities to relax and let the data do the talking. If anything, big data generating processes will require more work on the part of the researcher than previous data sources.

John Beieler is a Ph.D. student in the Department of Political Science at Pennsylvania State University. Additionally, he is a trainee in the NSF Big Data Social Science IGERT program for 2013-2015. His substantive research focuses on international conflict and instances of political violence such as terrorism and substate violence. He also has interests in big data, machine learning, event forecasting, and social network analysis. He aims to bring these substantive and methodological interests together in order to further research in international relations and enable greater predictive accuracy for events of interest.